On graphs with edge-transitive automorphism groups
نویسندگان
چکیده
منابع مشابه
AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملThe automorphism groups of non-edge-transitive rose window graphs
In this paper, we will determine the full automorphism groups of rose window graphs that are not edge-transitive. As the full automorphism groups of edge-transitive rose window graphs have been determined, this will complete the problem of calculating the full automorphism group of rose window graphs. As a corollary, we determine which rose window graphs are vertex-transitive. Finally, we deter...
متن کاملOn classifying finite edge colored graphs with two transitive automorphism groups
This paper classifies all finite edge colored graphs with doubly transitive automorphism groups. This result generalizes the classification of doubly transitive balanced incomplete block designs with 1 and doubly transitive one-factorizations of complete graphs. It also provides a classification of all doubly transitive symmetric association schemes. The classification of finite simple groups i...
متن کاملOn automorphism groups of quasiprimitive 2-arc transitive graphs
We characterize the automorphism groups of quasiprimitive 2-arc-transitive graphs of twisted wreath product type. This is a partial solution for a problem of Praeger regarding quasiprimitive 2-arc transitive graphs. The solution stimulates several further research problems regarding automorphism groups of edge-transitive Cayley graphs and digraphs.
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1984
ISSN: 0019-2082
DOI: 10.1215/ijm/1256065274